Motorola Gm328 Gm338 Gm398 Detailed 6804112j18 E Manual
Have a look at the manual Motorola Gm328 Gm338 Gm398 Detailed 6804112j18 E Manual online for free. It’s possible to download the document as PDF or print. UserManuals.tech offer 249 Motorola manuals and user’s guides for free. Share the user manual or guide on Facebook, Twitter or Google+.
UHF (403-470 MHz) Transmitter Power Amplifier (PA) 40 W 2-3 2.4 Low Intermediate Frequency (IF) and Receiver Back End The 44.85 high IF signal from the second IF amplifier feeds the IF IC (U3101) at pin1. Within the IF IC the 44.85 MHz high IF signal mixes with the 44.395 MHz second local oscillator (2nd LO) to produce the low IF signal at 455 kHz. The 2nd LO frequency is determined by crystal Y3101. The low IF signal is amplified and filtered by an external pair of 455 kHz ceramic filters FL3112, FL3114 for 20/25 kHz channel spacing or FL3111,FL3113/F3115 for 12.5 kHz channel spacing. These pairs are selectable via BWSELECT. The filtered output from the ceramic filters is applied to the limiter input pin of the IF IC (pin 14). The IF IC contains a quadrature detector using a ceramic phase-shift element (Y3102) to provide audio detection. Internal amplification provides an audio output level of 120 mV rms (at 60% deviation) from U3103 pin 8 (DISCAUDIO) which is fed to the ASFIC_CMP (U0221) pin 2 (part of the Controller circuitry). A Received Signal Strength Indicator (RSSI) signal is available at U3101 pin 5, having a dynamic range of 70 dB. The RSSI signal is interpreted by the microprocessor (U0101 pin 63) and in addition is available at accessory connector J0501-15. 3.0 UHF (403-470 MHz) Transmitter Power Amplifier (PA) 40 W The radio’s 40W PA is a three stage amplifier used to amplify the output from the VCOBIC to the radio transmit level. All three stages utilize LDMOS technology. The gain of the first stage (U4401) is adjustable, controlled by pin 4 of PCIC (U4501). It is followed by an LDMOS stage (Q4421) and LDMOS final stage (Q4441). Figure 2-2 UHF Transmitter Block Diagram Devices U4401, Q4421 and Q4441 are surface mounted. A pressure pad between board and the radios cover provides good thermal contact between the devices and the chassis.PCIC Pin Diode Antenna Switch RF JackAntenna Harmonic Filter PowerSensePA - F i n a lStag e From VCOControlledStag e VcontrolBias 1Bias 2 & Bias 3 To Microprocessor Temperature Sense SPI BUS ASFIC_CMP PA PWR SET To Microprocessor PADriver
2-4 UHF (403-470 MHz) Transmitter Power Amplifier (PA) 40 W 3.1 First Power Controlled Stage The first stage (U4401) is a 20dB gain integrated circuit containing two LDMOS FET amplifier stages. It amplifies the RF signal from the VCO (TXINJ). The output power of stage U4401 is controlled by a DC voltage applied to pin 1 from Q4473. The control voltage simultaneously varies the bias of two FET stages within U4401. This biasing point determines the overall gain of U4401 and therefore its output drive level to Q4421, which in turn controls the output power of the PA. Switch S4440 is a pressure pad with a conductive strip which connects two conductive areas on the board when the radios cover is properly screwed to the chassis. When the cover is removed, S4440 opens and cuts the supply voltage to Q4473 thus disabling control voltage to U4401. This prevents transmitter key up while the devices do not have proper thermal contact to the chassis. 3.2 Power Controlled Driver Stage The next stage is an LDMOS device (Q4421) providing a gain of 12dB. This device requires a positive gate bias and a quiescent current flow for proper operation. The bias is set during transmit mode by U4501-24 and fed to the gate of Q4421 via the resistive network R4480, R4408, R4415 and R4416. 3.3 Final Stage The final stage is an LDMOS MRF 1570 device Q4441. It provides a gain of 11dB. It integrates two MRF1535 die inside. These two die are being run in parallel. The output of each of the device (die) inside are combined to constitute the total output power. This device also requires a positive gate bias and a quiescent current flow for proper operation. The voltage of the line MOSBIAS_2 and MOSBIAS_3 are set in transmit mode by the ASFIC and fed to the gate of Q4441 via two resistive network R4631, R4634, R4485, R4486 and R4632, R4635, R4481, R4489. These bias voltages are tuned in the factory. If the transistor is replaced, the bias voltage must be tuned using the Global Tuner. Care must be taken not to damage the device by exceeding the maximum allowed bias voltage. The device’s drain current is drawn directly from the radio’s DC supply voltage input, PASUPVLTG, via L4421, L4437 and L4436, L4438. A matching network consisting of C4440-45, C4466-67, C4476-77, C4487, C4491, C4489, C4490, C4455-56, C4449-50 and striplines transforms the impedance to 50 ohms and feeds the directional coupler.
UHF (403-470 MHz) Transmitter Power Amplifier (PA) 40 W 2-5 3.4 Directional Coupler The directional coupler is a microstrip printed circuit, which couples a small amount of the forward power delivered by Q4441. The coupled signal is rectified by D4451. The DC voltage is proportional to the RF output power and feeds the RFIN port of the PCIC (U4501 pin 1). The PCIC controls the gain of stage U4401 as necessary to hold this voltage constant, thus ensuring the forward power out of the radio to be held to a constant value. 3.5 Antenna Switch The antenna switch consists of two PIN diodes, D4471 and D4472. In the receive mode, both diodes are off. Signals applied at the antenna jack J4401 are routed, via the harmonic filter, through network L4472, C4474 and C4475, to the receiver input. In the transmit mode, K9V1 turns on Q4471 which enables current sink Q4472, set to 96 mA by R4512 and VR4471. This completes a DC path from PASUPVLTG, through L4437, D4471, L4472, D4472, L4473, R4496 and the current sink, to ground. Both diodes are forward biased into conduction. The transmitter RF from the directional coupler is routed via D4471 to the harmonic filter and antenna jack. D4472 also conducts, shunting RF power and preventing it from reaching the receiver port (RXIN). L4472 is selected to appear as a broadband lambda/4 wave transmission line, making the short circuit presented by D4472 appear as an open circuit at the junction of D4472 and the receiver path. 3.6 Harmonic Filter Components L4491-L4493 and L4472, C4448, C4494, C4496 and C4498 form a Butterworth low- pass filter to attenuate harmonic energy of the transmitter to specifications level. R4491 is used to drain electrostatic charge that might otherwise build up on the antenna. The harmonic filter also prevents high level RF signals above the receiver passband from reaching the receiver circuits, improving spurious response rejection. 3.7 Power Control The transmitter uses the Power Control IC (PCIC, U4501) to control the power output of the radio. A portion of the forward RF power from the transmitter is sampled by the directional coupler and rectified, to provide a DC voltage to the RFIN port of the PCIC (pin 1) which is proportional to the sampled RF power. The ASFIC (U0221) has internal digital to analog converters (DACs) which provide a reference voltage of the control loop to the PCIC via R4483. The reference voltage level is programmable through the SPI line of the PCIC. This reference voltage is proportional to the desired power setting of the transmitter, and is factory programmed at several points across the frequency range of the transmitter to offset frequency response variations of the transmitter’s power detector circuit. The PCIC provides a DC output voltage at pin 4 (INT) which sets the drain current of the first (U4401). This adjusts the transmitter power output to the intended value. Variations in forward transmitter power cause the DC voltage at pin 1 to change, and the PCIC adjusts the control voltage above or below its nominal value to raise or lower output power. Capacitors C4502-4, in conjunction with resistors and integrators within the PCIC, control the transmitter power-rise (key-up) and power-decay (de-key) characteristic to minimize splatter into adjacent channels.
2-6UHF (403-470 MHz) Frequency Synthesis U4502 is a temperature-sensing device, which monitors the circuit board temperature in the vicinity of the transmitter driver and final devices, and provides a DC voltage to the PCIC (TEMP, pin 30) proportional to temperature. If the DC voltage produced exceeds the set threshold in the PCIC, the transmitter output power will be reduced so as to reduce the transmitter temperature. 4.0 UHF (403-470 MHz) Frequency Synthesis The synthesizer subsystem consists of the reference oscillator (Y4261 or Y4262), the Low Voltage Fractional-N synthesizer (LVFRAC-N, U4201), and the Voltage Controlled Oscillator VCO. 4.1 Reference Oscillator The reference oscillator (Y4262) contains a temperature compensated crystal oscillator with a frequency of 16.8 MHz. An Analogue to Digital (A/D) converter internal to U4201 (LVFRAC-N) and controlled by the microprocessor via serial interface (SRL) sets the voltage at the warp output of U4201 pin 25 to set the frequency of the oscillator. The output of the oscillator (pin 3 of Y4262) is applied to pin 23 (XTAL1) of U4201 via a RC series combination. In applications where less frequency stability is required the oscillator inside U4201 is used along with an external crystal Y4261, varactor diode D4261, C4261, C4262 and R4262. In this case, Y4262, R4263, C4235 and C4251 are not used. When Y4262 is used, Y4261, D4261, C4261, C4262 and R4262 are not used, and C4263 is increased to 0.1 uF.
UHF (403-470 MHz) Frequency Synthesis2-7 4.2 Fractional-N Synthesizer The LVFRAC-N synthesizer IC (U4201) consists of a pre-scaler, a programmable loop divider, control divider logic, a phase detector, a charge pump, an A/D converter for low frequency digital modulation, a balance attenuator to balance the high frequency analogue modulation and low frequency digital modulation, a 13V positive voltage multiplier, a serial interface for control, and finally a super filter for the regulated 5 volts. Figure 2-3 UHF Synthesizer Block Diagram A voltage of 5V applied to the super filter input (U4201 pin 30) supplies an output voltage of 4.5 VDC(VSF) at pin 28. It supplies the VCO, VCO modulation bias circuit (via R4322) and the synthesizer charge pump resistor network (R4251, R4252). The synthesizer supply voltage is provided by the 5V regulator U4211. In order to generate a high voltage to supply the phase detector (charge pump) output stage at pin 47 VCP (U4201-47), a voltage of 13 VDC is being generated by the positive voltage multiplier circuitry (D4201, C4202, C4203). This voltage multiplier is basically a diode capacitor network driven by two (1.05MHz) 180 degrees out of phase signals (U4201-14 and -15). Output LOCK (U4201-4) provides information about the lock status of the synthesizer loop. A high level at this output indicates a stable loop. IC U4201 provides the 16.8 MHz reference frequency at pin 19. The serial interface (SRL) is connected to the microprocessor via the data line DATA (U4201-7), clock line CLK (U4201-8), and chip enable line CSX (U4201-9). DATA CLK CEX MODIN VCC, DC5V XTAL1 XTAL2 WARP PREIN VCP REFERENCE OSCILLATOR VOLTAGE MULTIPLIER DATA (U0101 PIN 100) CLOCK (U0101 PIN 1) CSX (U0101 PIN 2) MOD IN (U0221 PIN 40) +5V (U4211 PIN 1)7 8 9 10 13, 30 23 24 25 32 47 VMULT2 VMULT1BIAS1 SFOUTAUX3 AUX4 IADAPTIOUTGND FREFOUTLOCK4 19 6, 22, 33, 44 43 45 3 2 28 14 1540FILTERED 5VSTEERING LOCK (U0101 PIN 56) PRESCALER INFREF (U0221 PIN 34) 39 BIAS2 41 48 5, 20, 34, 36 +5V (U4211 PIN 1) AUX1 VDD, DC5VMODOUT U4201 LOW VOLTAGEFRACTIONAL-N SYNTHESIZER AUX21 (NU) BWSELECTVCO Bias TRB To IF SectionTX RF INJECTION (1ST STAGE OF PA)LO RF INJECTION VOLTAGE CONTROLLED OSCILLATORLINE 2-POLE LOOP FILTER
2-8UHF (403-470 MHz) Frequency Synthesis 4.3 Voltage Controlled Oscillator (VCO) The Voltage Controlled Oscillator (VCO) consists of the VCO/Buffer IC (VCOBIC, U4301), the TX and RX tank circuits, the external RX buffer stages, and the modulation circuitry. Figure 2-4 UHF VCO Block Diagram The VCOBIC together with Fractional-N synthesizer (U4201) generates the required frequencies in both transmit and receive modes. The TRB line (U4301 pin 19) determines which tank circuits and internal buffers are to be enabled. A high level on TRB enables TX tank and TX output (pin 10), and a low enables RX tank and RX output (pin 8). A sample of the signal from the enabled output is routed from U4301 pin 12 (PRESC_OUT), via a low pass filter, to pin 32 of U4201 (PREIN). A steering line voltage (VCTRL) between 3.0V and 10.0V at varactor diode CR4311 will tune the full TX frequency range (TXINJ) from 403 MHz to 470 MHz, and at varactor diodes CR4301, CR4302 and CR4303 will tune the full RX frequency range (RXINJ) from 358 MHz to 425 MHz. The tank circuits uses the Hartley configuration for wider bandwidth. For the RX tank circuit, an external transistor Q4301 is used in conjunction with the internal transistor for better side-band noise. Presc RX TXMatching NetworkLow Pass Filter Attenuator Pin8 Pin14 Pin10(U4201 Pin28) VCC Buffers TX RF Injection U4201 Pin 32 AUX3 (U4201 Pin 2) Prescaler Out Pin 12 Pin 19 Pin 20 TX/RX/BS Switching Network U4301 VCOBIC Rx Active Bias Tx Active Bias Pin2 Rx-I adjustPin1 Tx-I adjustPins 9,11,17 Pin18Vsens Circuit Pin15Pin16 RX VCO Circuit TX VCO Circuit RX Tank TX TankPin7 Vcc-Superfilter Collector/RF in Pin4 Pin5 Pin6 RX TX (U4201 Pin 28)Rx-SW Tx-SW Vcc-Logic (U4201 Pin 28) Steer Line Voltage (VCTRL)Pin13 Pin3TRB IN LO RF INJECTION Q4301 Q4332
UHF (403-470 MHz) Frequency Synthesis2-9 The external RX buffers (Q4332) are enabled by a high at U4201 pin 3 (AUX4) via transistor switch Q4333. In TX mode the modulation signal (VCOMOD) from the LVFRAC-N synthesizer IC (U4201 pin41) is applied modulation circuitry CR4321, R4321, R4322 and C4324, which modulates the TX VCO frequency via coupling capacitor C4321. Varactor CR4321 is biased for linearity from VSF. 4.4 Synthesizer Operation The complete synthesizer subsystem comprises mainly of low voltage FRAC-N (LVFRACN) IC, Reference Oscillator (crystal oscillator with temperature compensation), charge pump circuitry, loop filter circuitry and DC supply. The output signal PRESC_OUT of the VCOBIC (U4301 pin 12) is fed to pin 32 of U4201 (PREIN) via a low pass filter (C4229, L4225) which attenuates harmonics and provides the correct level to close the synthesizer loop. The pre-scaler in the synthesizer (U4201) is basically a dual modulus pre-scaler with selectable divider ratios. This divider ratio of the pre-scaler is controlled by the loop divider, which in turn receives its inputs via the SRL. The output of the pre-scaler is applied to the loop divider. The output of the loop divider is connected to the phase detector, which compares the loop divider´s output signal with the reference signal.The reference signal is generated by dividing down the signal of the reference oscillator (Y4261 or Y4262). The output signal of the phase detector is a pulsed DC signal which is routed to the charge pump. The charge pump outputs a current at pin 43 of U4201 (IOUT). The loop filter (which consists of R4221-R4223, C4221-C4225,L4221) transforms this current into a voltage that is applied to the varactor diodes CR4311 for transmit, CR4301, CR4302 & CR4303 for receive and alters the output frequency of the VCO .The current can be set to a value fixed in the LVFRAC-N IC or to a value determined by the currents flowing into BIAS 1 (U4201-40) or BIAS 2 (U4201-39). The currents are set by the value of R4251 or R4252 respectively. The selection of the three different bias sources is done by software programming. To reduce synthesizer lock time when new frequency data has been loaded into the synthesizer the magnitude of the loop current is increased by enabling the IADAPT (U4201-45) for a certain software programmable time (Adapt Mode). The adapt mode timer is started by a low to high transient of the CSX line. When the synthesizer is within the lock range the current is determined only by the resistors connected to BIAS 1, BIAS 2, or the internal current source. A settled synthesizer loop is indicated by a high level of signal LOCK (U4201-4). The LOCK (U4201-4) signal is routed to one of the µP´s ADCs input U101-56. From the voltage the µP determines whether LOCK is active. In order to modulate the PLL the two spot modulation method is utilized. Via pin 10 (MODIN) on U4201 the audio signal is applied to both the A/D converter (low freq path) as well as the balance attenuator (high freq path). The A/D converter converts the low frequency analogue modulating signal into a digital code that is applied to the loop divider, thereby causing the carrier to deviate. The balance attenuator is used to adjust the VCO’s deviation sensitivity to high frequency modulating signals. The output of the balance attenuator is present at the MODOUT port (U4201-41) and connected to the VCO modulation diode CR4321 via R4321, C4325.
2-10UHF (403-470 MHz) Frequency Synthesis THIS PAGE INTENTIONALLY LEFT BLANK
3-1 Section 3 TROUBLESHOOTING CHARTS 1.0 Troubleshooting Flow Chart for Receiver (Sheet 1 of 2) Bad SINAD Bad 20dB Quieting No Recovered AudioSTART Audio at pin 8 of U3101 ?Check Controller (in the case of no audio) OR ELSE go to “B” Ye s No Spray or inject 44.85MHz into XTAL Filter FL3101 Audio heard ?BYe s No Check 2nd LO (44.395MHz) at C3135 LO present ?BYe s Check voltages on U3101Biasing OK ? No No A Ye s Check Q3102 bias for faults Replace Q3102 Go to B Ye s No Check circuitry around U3101. Replace U3101 if defect Check circuitry around Y3101. Replace Y3101 if defectVoltages OK?
3-2Troubleshooting Flow Chart for Receiver 1.1Troubleshooting Flow Chart for Receiver (Sheet 2 of 2) IF Signal at C3101? No RF Signal at T4051? RF Signal at C4015? No No RF Signal at C4025? No or Check harmonic filter L4491-L4493, C4492, J4401 and ant. switch D4471, D4472, L4472. Check filter between C4025 & C4009. Check tuning voltage at R4060. Inject RF into J4401 Is tuning voltage OK? No Ye s Check RF amp (Q4003) Stage. Check filter between C4015 & T4051. Ye s Check T4051, T4052, D4051, R4052, L4008. Ye s 1st LO level OK? Locked?Ye s Check FGU Ye s Trace IF signal from C3101 to Q3101. Check for bad XTAL filter. No Ye sIF signal at Q3102 collector? Before replacing U3101, check U3101 voltages. Ye s Check for 5VDC Is 9V3 present? Check Supply Voltage circuitry. Check Q0681, U4211 and U0641. No No No Check U4501. Check varactor filter. NoYe s Ye s Ye s A A B weak RFRF Signal at C4009?