Asus Router WL-320gE User Manual
Have a look at the manual Asus Router WL-320gE User Manual online for free. It’s possible to download the document as PDF or print. UserManuals.tech offer 379 Asus manuals and user’s guides for free. Share the user manual or guide on Facebook, Twitter or Google+.
. Appendix ASUS 802.11g Access Point1 Chapter - Appendix DSSS PHY frequency channel plan (Regulatory Domains) CH ID Frequency X’10’ X’20’ X’30’ X’31’ X’32’ X’40’ FCC IC ETSI Spain France MKK 1 2412 MHz Yes Yes Yes - - Yes 2 2417 MHz Yes Yes Yes - - Yes 3 2422 MHz Yes Yes Yes - - Yes 4 2427 MHz Yes Yes Yes - - Yes 5 2432 MHz Yes Yes Yes - - Yes 6 2437 MHz Yes Yes Yes - - Yes- 7 2442 MHz Yes Yes Yes - - Yes 8 2447 MHz Yes Yes Yes - - Yes 9 2452 MHz Yes Yes Yes - - Yes 10 2457 MHz Yes Yes Yes Yes Yes Yes 11 2462 MHz Yes Yes Yes Yes Yes Yes 12 2467 MHz - - Yes Yes 13 2472 MHz - - Yes Yes Yes 14 2484 MHz - - - - Yes
. Appendix 2ASUS 802.11g Access Point Chapter - Appendix Glossary Access Point (AP) A networking device that seamlessly connects wired and wireless networks. Access Points combined with a distributed system support the creation of multiple radio cells that enable roaming throughout a facility. Ad Hoc A wireless network composed solely of stations within mutual communication range of each other (no Access Point). AES(Advance Encryption Standard) AES is the U.S. government’s next-generation cryptography algorithm, which will replace DES and 3DES. This encryption key protocol is applied in 802.1i standard to improve WLAN security. AES will require new hardware, in contrast with TKIP that can be used on existing wireless devices. Basic Service Area (BSS) A set of stations controlled by a single coordination function. Broadband A type of data transmission in which a single medium (such as cable) carries several channels of data at once. Channel An instance of medium use for the purpose of passing protocol data units that may be used simultaneously, in the same volume of space, with other instances of medium use (on other channels) by other instances of the same physical layer, with an acceptably low frame error ratio due to mutual interference. Client A client is the desktop or mobile PC that is connected to your network. COFDM (for 802.11a or 802.11g) Signal power alone is not enough to maintain 802.11b-like distances in an 802.11a/g environment. To compensate, a new physical-layer encoding technology was designed that departs from the traditional direct-sequence technology being deployed today. This technology is called COFDM (coded OFDM). COFDM was developed specifically for indoor wireless use and offers performance much superior to that of spread-spectrum solutions. COFDM works by breaking one high-speed data carrier into several
. Appendix ASUS 802.11g Access Point3 Chapter - Appendix lower-speed subcarriers, which are then transmitted in parallel. Each high- speed carrier is 20 MHz wide and is broken up into 52 subchannels, each approximately 300 KHz wide. COFDM uses 48 of these subchannels for data, while the remaining four are used for error correction. COFDM delivers higher data rates and a high degree of multipath reflection recovery, thanks to its encoding scheme and error correction. Each subchannel in the COFDM implementation is about 300 KHz wide. At the low end of the speed gradient, BPSK (binary phase shift keying) is used to encode 125 Kbps of data per channel, resulting in a 6,000-Kbps, or 6 Mbps, data rate. Using quadrature phase shift keying, you can double the amount of data encoded to 250 Kbps per channel, yielding a 12-Mbps data rate. And by using 16-level quadrature amplitude modulation encoding 4 bits per hertz, you can achieve a data rate of 24 Mbps. The 802.11a/g standard specifies that all 802.11a/g-compliant products must support these basic data rates. The standard also lets the vendor extend the modulation scheme beyond 24 Mbps. Remember, the more bits per cycle (hertz) that are encoded, the more susceptible the signal will be to interference and fading, and ultimately, the shorter the range, unless power output is increased. Device Name Also known as DHCP client ID or network name. Sometimes provided by an ISP when using DHCP to assign addresses. DHCP (Dynamic Host Configuration Protocol) This protocol allows a computer (or many computers on your network) to be automatically assigned a single IP address from a DHCP server. DNS Server Address (Domain Name System) DNS allows Internet host computers to have a domain name and one or more IP addresses. A DNS server keeps a database of host computers and their respective domain names and IP addresses, so that when a user enters a domain name into the Internet browser, the user is sent to the proper IP address. The DNS server address used by the computers on your home network is the location of the DNS server your ISP has assigned. DSL Modem (Digital Subscriber Line) A DSL modem uses your existing phone lines to transmit data at high speeds. Direct-Sequence Spread Spectrum (for 802.11b) Spread spectrum (broadband) uses a narrowband signal to spread the transmission over a segment of the radio frequency band or spectrum.
. Appendix ASUS 802.11g Access Point Chapter - Appendix Direct-sequence is a spread spectrum technique where the transmitted signal is spread over a particular frequency range. Direct-sequence systems communicate by continuously transmitting a redundant pattern of bits called a chipping sequence. Each bit of transmitted data is mapped into chips and rearranged into a pseudorandom spreading code to form the chipping sequence. The chipping sequence is combined with a transmitted data stream to produce the output signal. Wireless mobile clients receiving a direct-sequence transmission use the spreading code to map the chips within the chipping sequence back into bits to recreate the original data transmitted by the wireless device. Intercepting and decoding a direct-sequence transmission requires a predefined algorithm to associate the spreading code used by the transmitting wireless device to the receiving wireless mobile client. This algorithm is established by IEEE 802.11b specifications. The bit redundancy within the chipping sequence enables the receiving wireless mobile client to recreate the original data pattern, even if bits in the chipping sequence are corrupted by interference. The ratio of chips per bit is called the spreading ratio. A high spreading ratio increases the resistance of the signal to interference. A low spreading ratio increases the bandwidth available to the user. The wireless device uses a constant chip rate of 11Mchips/s for all data rates, but uses different modulation schemes to encode more bits per chip at the higher data rates. The wireless device is capable of an 11 Mbps data transmission rate, but the coverage area is less than a 1 or 2 Mbps wireless device since coverage area decreases as bandwidth increases. Encryption This provides wireless data transmissions with a level of security. Extended Service Set (ESS) A set of one or more interconnected basic service set (BSSs) and integrated local area networks (LANs) can be configured as an Extended Service Set. ESSID (Extended Service Set Identifier) You must have the same ESSID entered into the gateway and each of its wireless clients. The ESSID is a unique identifier for your wireless network. Ethernet The most widely used LAN access method, which is defined by the IEEE 802.3 standard. Ethernet is normally a shared media LAN meaning all devices
. Appendix ASUS 802.11g Access Point Chapter - Appendix on the network segment share total bandwidth. Ethernet networks operate at 10Mbps using CSMA/CD to run over 10-BaseT cables. Firewall A firewall determines which information passes in and out of a network. NAT can create a natural firewall by hiding a local network’s IP addresses from the Internet. A Firewall prevents anyone outside of your network from accessing your computer and possibly damaging or viewing your files. Gateway A network point that manages all the data traffic of your network, as well as to the Internet and connects one network to another. IEEE The Institute of Electrical and Electronics Engineers. The IEEE sets standards for networking, including Ethernet LANs. IEEE standards ensure interoperability between systems of the same type. IEEE 802.11 IEEE 802.xx is a set of specifications for LANs from the Institute of Electrical and Electronic Engineers (IEEE). Most wired networks conform to 802.3, the specification for CSMA/CD based Ethernet networks or 802.5, the specification for token ring networks. 802.11 defines the standard for wireless LANs encompassing three incompatible (non-interoperable) technologies: Frequency Hopping Spread Spectrum (FHSS), Direct Sequence Spread Spectrum (DSSS), and Infrared. 802.11 specifies a carrier sense media access control and physical layer specifications for 1 and 2 Mbps wireless LANs. IEEE 802.11a (Mbits/sec) Compared with 802.11b: The 802.11b standard was designed to operate in the 2.4-GHz ISM (Industrial, Scientific and Medical) band using direct- sequence spread-spectrum technology. The 802.11a standard, on the other hand, was designed to operate in the more recently allocated 5-GHz UNII (Unlicensed National Information Infrastructure) band. And unlike 802.11b, the 802.11a standard departs from the traditional spread-spectrum technology, instead using a frequency division multiplexing scheme that’s intended to be friendlier to office environments. The 802.11a standard, which supports data rates of up to 54 Mbps, is the Fast Ethernet analog to 802.11b, which supports data rates of up to 11 Mbps. Like Ethernet and Fast Ethernet, 802.11b and 802.11a use an identical MAC (Media Access Control). However, while Fast Ethernet uses the same
. Appendix 6ASUS 802.11g Access Point Chapter - Appendix physical-layer encoding scheme as Ethernet (only faster), 802.11a uses an entirely different encoding scheme, called OFDM (orthogonal frequency division multiplexing). The 802.11b spectrum is plagued by saturation from wireless phones, microwave ovens and other emerging wireless technologies, such as Bluetooth. In contrast, 802.11a spectrum is relatively free of interference. The 802.11a standard gains some of its performance from the higher frequencies at which it operates. The laws of information theory tie frequency, radiated power and distance together in an inverse relationship. Thus, moving up to the 5-GHz spectrum from 2.4 GHz will lead to shorter distances, given the same radiated power and encoding scheme. Compared with 802.11g: 802.11a is a standard for access points and radio NICs that is ahead of 802.11g in the market by about six months. 802.11a operates in the 5GHz frequency band with twelve separate non-overlapping channels. As a result, you can have up to twelve access points set to different channels in the same area without them interfering with each other. This makes access point channel assignment much easier and significantly increases the throughput the wireless LAN can deliver within a given area. In addition, RF interference is much less likely because of the less-crowded 5 GHz band. IEEE 802.11b (11Mbits/sec) In 1997, the Institute of Electrical and Electronics Engineers (IEEE) adopted the 802.11 standard for wireless devices operating in the 2.4 GHz frequency band. This standard includes provisions for three radio technologies: direct sequence spread spectrum, frequency hopping spread spectrum, and infrared. Devices that comply with the 802.11 standard operate at a data rate of either 1 or 2 Mbps. In 1999, the IEEE created the 802.11b standard. 802.11b is essentially identical to the 802.11 standard except 802.11b provides for data rates of up to 11 Mbps for direct sequence spread spectrum devices. Under 802.11b, direct sequence devices can operate at 11 Mbps, 5.5 Mbps, 2 Mbps, or 1 Mbps. This provides interoperability with existing 802.11 direct sequence devices that operate only at 2 Mbps. Direct sequence spread spectrum devices spread a radio signal over a range of frequencies. The IEEE 802.11b specification allocates the 2.4 GHz frequency band into 14 overlapping operating Channels. Each Channel corresponds to a different set of frequencies. IEEE 802.11g 802.11g is a proposed (to be finalized) new extension to 802.11b (used in
. Appendix ASUS 802.11g Access Point7 Chapter - Appendix majority of wireless LANs today) that broadens 802.11b’s data rates to 54 Mbps within the 2.4 GHz band using OFDM (orthogonal frequency division multiplexing) technology. 802.11g allows backward compatibility with 802.11b devices but only at 11 Mbps or lower, depending on the range and presence of obstructions. Infrastructure A wireless network centered about an access point. In this environment, the access point not only provides communication with the wired network but also mediates wireless network traffic in the immediate neighborhood. IP (Internet Protocol) The TCP/IP standard protocol that defines the IP datagram as the unit of information passed across an Internet and provides the basis for connectionless packet delivery service. IP includes the ICMP control and error message protocol as an integral part. It provides the functional equivalent of ISO OSI Network Services. IP Address An IP address is a 32-bit number that identifies each sender or receiver of information that is sent across the Internet. An IP address has two parts: the identifier of a particular network on the Internet and an identifier of the particular device (which can be a server or a workstation) within that network. ISM Bands (Industrial, Scientific, and Medicine Bands) Radio frequency bands that the Federal Communications Commission (FCC) authorized for wireless LANs. The ISM bands are located at 902 MHz, 2.400 GHz, and 5.7 GHz. ISP (Internet Service Provider) An organization that provides access to the Internet. Small ISPs provide service via modem and ISDN while the larger ones also offer private line hookups (T1, fractional T1, etc.). LAN (Local Area Network) A communications network that serves users within a defined geographical area. The benefits include the sharing of Internet access, files and equipment like printers and storage devices. Special network cabling (10 Base-T) is often used to connect the PCs together.
. Appendix 8ASUS 802.11g Access Point Chapter - Appendix MAC Address (Media Access Control) A MAC address is the hardware address of a device connected to a network. NAT (Network Address Translation) NAT masks a local network’s group of IP addresses from the external network, allowing a local network of computers to share a single ISP account. This process allows all of the computers on your home network to use one IP address. This will enable access to the Internet from any computer on your home network without having to purchase more IP addresses from your ISP. NIC (Network Interface Card) A network adapter inserted into a computer so that the computer can be connected to a network. It is responsible for converting data from stored in the computer to the form transmitted or received. Packet A basic message unit for communication across a network. A packet usually includes routing information, data, and sometimes error detection information. PCMCIA (Personal Computer Memory Card International Association) The Personal Computer Memory Card International Association (PCMCIA), develops standards for PC cards, formerly known as PCMCIA cards. These cards are available in three types, and are about the same length and width as credit cards. However, the different width of the cards ranges in thickness from 3.3 mm (Type I) to 5.0 mm (Type II) to 10.5 mm (Type III). These cards can be used for various functions, including memory storage, land line modems and wireless modems. PPP (Point-to-Point Protocol) PPP is a protocol for communication between computers using a serial interface, typically a personal computer connected by phone line to a server. PPPoE (Point-to-Point Protocol over Ethernet) Point-to-Point Protocol is a method of secure data transmission. PPP using Ethernet to connect to an ISP. Radio Frequency (RF) Terms: GHz, MHz, Hz The international unit for measuring frequency is Hertz (Hz), equivalent to the older unit of cycles per second. One megahertz (MHz) is one million
. Appendix ASUS 802.11g Access Point Chapter - Appendix Hertz. One gigahertz (GHz) is one billion Hertz. The standard US electrical power frequency is 60 Hz, the AM broadcast radio frequency band is 0.55-1.6 MHz, the FM broadcast radio frequency band is 88-108 MHz, and wireless 802.11 LANs operate at 2.4 GHz. RIP (Routing Information Protocol) Routing Information Protocol(RIP1) is defined as a means by which routing equipment can find the best path for transmitting data packets from one network to another. Upgrades have been made to the RIP1 protocol, resulting in Routing Information Protocol Version 2 (RIP2). RIP2 was developed to cover some of the inefficiencies of RIP1. Metric: RIP metric is a value of distance for the network. Usually RIP increments the metric when the network information is received. Redistributed routes’ default metric offset is set to 1. These rules can be used to change the metric offset only for the matched networks specified or excluded in the Route Metric Offset table. But the metric offset of other networks is still set to 1. SSID (Service Set ID) SSID is a group name shared by every member of a wireless network. Only client PCs with the same SSID are allowed to establish a connection. Station Any device containing IEEE 802.11 wireless medium access conformity. Subnet Mask A subnet mask is a set of four numbers configured like an IP address. It is used to create IP address numbers used only within a particular network. TCP (Transmission Control Protocol) The standard transport level protocol that provides the full duplex, stream service on which many application protocols depend. TCP allows a process or one machine to send a stream of data to a process on another. Software implementing TCP usually resides in the operating system and uses the IP to transmit information across the network. TKIP (Temporal Key Integrity Protocol) TKIP is used in WPA to replace WEP with a new encryption algorithm that is stronger than the WEP algorithm but that uses the calculation facilities present on existing wireless devices to perform encryption operations.
. Appendix 60ASUS 802.11g Access Point Chapter - Appendix WAN (Wide Area Network) A system of LANs, connected together. A network that connects computers located in separate areas, (i.e., different buildings, cities, countries). The Internet is a wide area network. WECA (Wireless Ethernet Compatibility Alliance) An industry group that certifies cross-vender interoperability and compatibility of IEEE 802.11b wireless networking products and to promote that standard for enterprise, small business, and home environments. WEP (Wired Equivalent Privacy) The IEEE 802.11b standard specifies an optional encryption feature, known as Wired Equivalent Privacy or WEP, that is designed to provide a wireless LAN with a security level equal to what is found on a wired Ethernet network. WEP encrypts the data portion of each packet exchanged on the 802.11b network using either a 64-bit or 128-bit encryption algorithm. In addition, WEP is also used in conjunction with the optional Shared Key Authentication algorithm to prevent unauthorized devices from associating with an 802.11b network. WLAN (Wireless Local Area Network) This is a group of computers and other devices connected wirelessly in a small area. A wireless network is referred to as LAN or WLAN. WPA (Wi-Fi Protected Access) Wi-Fi Protected Access is a specification, which offsets encryption and authentication improvements that are stronger than the Wireless Encryption Protocol (WEP), which it is meant to replace. WPA-PSK (Wi-Fi Protected Access – Pre-Shared Key) WPA-PSK is a special mode of WPA for home environment without a Remote Authentication Dial-In User Service (RADIUS). It is required to enter a password into their access point or home wireless gateway and each clients that is on the wireless network to keeps out eavesdroppers and other unauthorized users by requiring all devices to have the matching password.